Diffusion Example
This package is designed to allow practitioners to easily program the Wafer Scale Engine to solve Field Equations at an exceptionally rapid pace with high energy efficiency. This equation can be solved both explicitly and implicitly with linear discretization to second order accuracy. The WFA package is capable of solving both explicit and implicit formulations.
The governing equation for diffusion without convection takes a simple Laplacian form and is one of the most common field equations that relates the time rate of change of a scalar field to its spatial distribution, known as Fick’s second law. Here, \(\alpha\) is the conductivity.
Solving Explicitly
With explicit linear discretization on a cartesian, uniform grid, the diffusion equation simplifies to:
The equations will remain stable when:
From the stability criteria, it is clear that the allowable time step is proportional to the square of the voxel length scale and inversely proportional to the conductivity. Explicit solutions are very useful for large voxel size problems and/or those with low conductivity. Common applications for explicit solutions are weather and reservoir modeling where voxel sizes are large and conductivity is low.
The following code shows how to solve a generic diffusion equation explicitly in the WFA.
file name: rectangular_diffusion_explicit.py
from WFA.WSE_Interface import WSE_Interface
from WFA.WSE_Array import WSE_Array
from WFA.WSE_Loops import WSE_For_loop
import NumPy as np
wse = WSE_Interface()
parser = wse.get_cmd_line_parser()
# Define constansts
c = 0.1
center = 1.0 - 6.0 * c
# Add CFD specific command line arguments
parser.add_argument("-x","--x", help="specify x dimension", type=int, default=10)
parser.add_argument("-y","--y", help="specify y dimension", type=int, default=10)
parser.add_argument("-z", "--z", help="specify z dimension", type=int, default=10)
parser.add_argument("-ts","--time_steps", help="specify number of time steps", type=int, default=5)
args = wse.get_available_cmd_args()
# Create the initial Temperature field
T_init = np.ones((args.x,args.y,args.z))
#Set Boundary Conditions
T_init[1:-1,0,1:-1] = 1.0
T_init[1:-1,-1,1:-1] = 1.0
T_init[0,1:-1,1:-1] = 1.0
T_init[-1,1:-1,1:-1] = 1.0
T_init[1:-1,1:-1,0] = 0.0
T_init[1:-1,1:-1,-1] = 0.0
# Instantiate the WSE Array objects needed
T_n = WSE_Array(name='T_n', initData=T_init)
# Start looping over time
with WSE_For_loop('time_loop', args.time_steps):
# Update T from current values
T_n[1:-1,0,0] = center * T_n[1:-1,0,0]\
+ c*(T_n[2:,0,0] + T_n[:-2,0,0] \
+ T_n[1:-1,1,0] + T_n[1:-1,0,-1] \
+ T_n[1:-1,-1,0] + T_n[1:-1,0,1])
# Compile, run, and validate
wse.make_WSE(answer=T_n)
From the command line run:
$ python rectangular_diffusion_explicit.py
And it will produce an output similar to:
********************* Starting Make ***********************
********************* Writing binary input files ***********************
Total vectors to write: 3
Total Data to Write (MB): 0.012
Total T_bin to Write (MB): 0.00768
**************** Done writing binary input files ***********************
********************* Started Host Validation ***********************
********************* Done Host Validation ***********************
********************* Running Cerebras Tools ***********************
examples : 0:01.42 PASS smoke [ H=4 W=4 D=100 NC=8 NArgs=6 COMPILER=angler ]
********************* Finished Running Cerebras Tools ***********************
********************* Done Make ***********************
Solving Implicitly
Implicit methods can allow for larger time steps. The fully implicit formulation with linear discretization and a uniform grid simplified to:
The convergence criteria for an implicit method is diagonal dominance. In this case: \(1 \geq \frac{6c}{1+6c}\) which is always met. This equation will converge, even if slowly, regardless of the conductivity or cell length scale.
The following code shows how to solve a generic diffusion equation implicitly in the WFA.
file name: rectangular_diffusion.py
from WFA.WSE_Interface import WSE_Interface
from WFA.WSE_Array import WSE_Array
from WFA.WSE_Loops import WSE_For_loop
from WFA.WSE_Solver import CgConstantOffDiag, JacobiConstantOffDiag
import NumPy as np
wse = WSE_Interface()
parser = wse.get_cmd_line_parser()
c = 0.1
off_diag_coeff = -c/(1.0+6.0*c)
source_center_coeff = 1.0/(1.0+6.0*c)
#Add CFD Specific command line arguments
parser.add_argument("-x","--x", help="specify x dimension", type=int, default=10)
parser.add_argument("-y","--y", help="specify y dimension", type=int, default=10)
parser.add_argument("-z", "--z", help="specify z dimension", type=int, default=10)
parser.add_argument("-ts","--time_steps", help="specify number of time steps", type=int, default=5)
parser.add_argument("-s","--solver", help="the solver to use (Cg or Jacobi with constant off diagonal)", type=str, default='Cg')
args = wse.get_available_cmd_args()
if args.solver == 'Cg':
solver = CgConstantOffDiag(args.x, args.y, args.z)
elif args.solver == 'Jacobi':
solver = JacobiConstantOffDiag(args.x, args.y, args.z)
#Create the initial Temperature field
T_init = np.ones((args.x,args.y,args.z))
T_init[1:-1,0,1:-1] = 1.0
T_init[1:-1,-1,1:-1] = 1.0
T_init[0,1:-1,1:-1] = 1.0
T_init[-1,1:-1,1:-1] = 1.0
T_init[1:-1,1:-1,0] = 0.0
T_init[1:-1,1:-1,-1] = 0.0
#Instantiate the WSE Array objects needed
T_n = WSE_Array(name='T_n', initData=T_init)
if args.solver == 'Cg':
b = wse.get_named_array('program_scratch_2')
else:
b = WSE_Array(name='b', initData=np.zeros((args.x,args.y,args.z)))
with WSE_For_loop('time_loop', args.time_steps):
# calculate the source terms
b[1:-1,0,0] = source_center_coeff*T_n[1:-1,0,0]
# run the generalized CG solver
T_n = solver.solve(T_n, off_diag_coeff, b, 0.001)
wse.make_WSE(answer=T_n)
From the command line run:
$ python rectangular_diffusion.py
And it will produce an output similar to:
********************* Starting Make ***********************
********************* Writing binary input files ***********************
Total vectors to write: 6
Total Data to Write (MB): 0.024
Total T_bin to Write (MB): 0.01536
**************** Done writing binary input files ***********************
********************* Started Host Validation ***********************
********************* Done Host Validation ***********************
********************* Running Cerebras Tools ***********************
examples : 0:03.71 PASS smoke [ H=4 W=4 D=100 NC=8 NArgs=6 COMPILER=angler ]
********************* Finished Running Cerebras Tools ***********************
********************* Done Make ***********************